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FORCES ACTING AT A POINT: 3

a new resultant 7, and proceed in the same way till
all the forces have been combined and the general
resultant R obtained.

Thus in Fig. 2, P,, P,.... P are forces acting at
a point O, the lengths P, O, P, O,.... etc., repre-
senting their respective magnitudes on any convenient
scale. Starting from P, draw P, a equal and parallel
to OP,; then aO is the resultant », of P, and P,;
draw a b equal and parallel to P;; then 0 is.the
resultant 7, of P, P,, and P;; proceeding in this way
we finally obtain ¢ O as the resultant R of P, ... . P,.

Fia. 2.

In practice the dotted lines @ O, b O, etc., need
not be drawn, and we obtain therefore the following
rule.

When any number of forces act in oy divection ok o

. s 2






FORCES ACTING ON A RIGID BODY. 5

In order to distinguish whether the force in any one
of the sides of the polygon is tensile or compressive,
resolve the exterior forces acting at both its end points
in directions coinciding with that side and the adjacent
-gides. Then insert arrows showing the directions of
the components of the resolved exterior forces; these
arrows in Fig. 3 point outwards, and there evidently
arises in the polygon sides 2 tensile stress ; if however,
the arrows point inwards, as in Fig. 4, the polygon side
will be in compression.

Fia. 3.

Fie. 4.

Since the interior forces act in directions opposite
to the resolved components of the exterior forces, place
at the ends a and b of the polygon side a b arrows in the
opposite direction to those of the resolved components ;
thus we obtain the following arrow combinations :—

Compression <—

Interior forces L
Tension

11 e

—>
Compression —>
&

Exterior forces { t
_ Tension









8 GRAPHIC STATICS.

general conditions of the equilibrium of a rigid body
may be summed as follows :—1st. The polygon formed
by the exterior forces must close. 2nd. Any funicular
polygon of those forces with respect to any pole must
also close.]

In the case of Fig. 5 all the sides of the frame are
evidently in tension.

Fi6. 6.

Suppose in a polygonal frame, Fig. 6, that two of its
sides K, K, and K, K are cut across, then evidently, in
order that equilibrium may be maintained, forces having
the same magnitude and direction as the stresses S,
and S, must be applied at the points of section. Hence
the resultant R of the stresses S; and S, holds in equi-
librium all the exterior forces acting on the frame on
the right or on the left of the section plane a 8. The
direction and magnitude of R is given by the diagonal
46 of the polygon of forces, since from what has been
said, R must form a closed polygon both with the forces
P, P,, P;, P,, and also with P, P,, Moreover, the re-
sultant R of S, and 8, must evidently pass through D,
the intersection of the cut sides produced. R therefore
*ts on the one hand as the resultent of the forces
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Hence we have the following theorem,

If the exterior forces acting at the angles of a funicular
polygon are parallel, then the components of the stresses at
right angles to the direction of the forces are equal in
magnitude.

If the exterior forces are vertical, the constant hori-
zontal component of the stresses is called the horizontal
thrust, or tenston.

In Fig. 7 the funicular and force polygons which
constitute the conditions of equilibrium of the parallel
forces P,,P,, ....Ps are shown. The mutual relations
between these two polygons are the same as in those of
Fig. 5, so that this figure may be considered as illustrat-
ing merely a special case of the preceding paragraph.

The constant horizontal thrust (H) is evidently given
by the line O% drawn from O perpendicular to A 3.
This line is termed the “ polar distance.”

Fie. 7.

'We will now proceed to the application of the results
far obtained, applying them first to the case of
srees, which is one of the most common occur-

'actice.









BENDING MOMENT. 13

ments of the exterior forces, the determination of these
moments is of the greatest importance in practice.

By statical or bending moment at any section a 8 of
the beam A F, Fig. 8, is understood the product of the
resultant R of all the forces acting on one or other
side of beam into the perpendicular distance ! of the
line of action of R from a 8. In the case of the sec-

tion a S,
R=D1-’P1=Sl

and the point of application of Ris 4, the point in which
those sides of the funicular polygon which are cut by
a B meet.

Drop the perpendicular < % from ¢ on a g, this perpen-
dicular is then equal to /, and the bending moment at
the section a 8 is

M=R.1l=S1.:k%

This product can readily be obtained graphically.
Draw the constant horizontal thrust H, then the triangle
0 81 is similar to the triangle ¢ m n, and hence

S1_man

H l

or if mn = y and for S 1 is value R is substituted,

we have

R_Y
H™1
and M =R.7=H.y

The bending moment M for any cross section 13 there-
fore directly proportional to the ordinate y of the funicular
polygon at that cross section.

If the constant horizontal thrust or “ polar distance”
H is taken as the unit of force, then

M=y






TRAVELLING LOAD. 15

(Fig. 9), distant 2 from A, let us investigate the two
following cases.

1st. Suppose P to lie to the right of a8, then the
NF
AF’

If we consider forces acting upwards as positive, then
in the present case V is positive and will evidently be
greater the greater N F is, that is the nearer the load P
approaches the section a 8.

shearing force V=D, = P.

Fig. 10.

s
Fip !f

2nd. Suppose P to lie to the lgft of a B, then the
shearing force V at a g is (Fig. 10),

V=D -P

NF.

but D, =P g
therefore NF AP_TFN
V=P(A—F")=‘P(—A‘F—)

_ _p AN

orV = 5%

In this case the shearing force is negative and will
be numerically greater the nearer P approaches to the
section a 8.
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Hence generally,

Every single travelling load exerts a positive or negative
shearing forcs according as it lies to the right or left of
any particular section, and this shearing force increases
in value as the load approaches the section.

Suppose the beam acted upon by a system of travel-
ling loads, as is the case of a railway bridge when a
train is passing over it. Then the pressure on every
wheel axle to the right of any section a 8 will exert a
positive shearing force, and that on every axle to the left
of the section a negative shearing force. If therefore a
positive shearing force only is brought to bear on a sec-
tion a B by the train, the latter must evidently come
on the bridge from the right abutment F' and move up
to the section @ 8. If on the other hand the train
comes from the left abutment and does not pass a8
then a negative shearing force only is brought to bear
on a 8 by the load on any wheel axle.

_ Hence generally,—

The greatest numerical value of the shearing force at
any section 18 reached when a trasn coming from the
SJurther abutment arrives at that section, so that the
leading locomotive awle s vertically over that section.

From Figs. 9 and 10 it appears that every load
applied to the beam right or left of the section a 8
increases the ordinate y of the funicular polygon, and
this increment is greater the nearer the load approaches
to that section. Since the moment M at any section
varies as the corresponding ordinate y of the funicular
polygon it follows that—

The moment M of the extersor forces P,, P,, P, ete.,
~aling at any section, a B (Fig. 8) 18 increased by every

™ ‘ulerposed between the supports A, F, and this
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taken at a distance from A’ B’ equal to any convenient
number on the scale of weights, say 30 tons.

Fic. 11.

Now the maximum shearing force at a section C,
whose distance from A is @, will be exerted when the
train coming on the bridge at B (the farther abutment)

s at C so that the leading axle I is vertically

's
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shuaring foree at any section is exerted whem the
berings: in fully londed and one of the grestest loads is
viabically over thut seetion, hence the maximum bending
nonint b wny section C at a distance z feet from A
(Fig. 185 will Ius osxertod when the train comes on the
bnidgs: ut 18 und sither the load III or II is vertically
wver (), .

Fugopumss firat that the load TII is at C. From the
whgeh: 11 of the funicular polygon (Fig. 11) draw IIla”
sl 1o e sl produce a” 111 to 3" making a”b” equal
Lo A B thes spun. Draw the vertical lines a”m, b"s
sitbing thes widow 1 11 and V VI produced in m and »
rempuatively,  Join mn, then mn is the closing line of
the: funieculur polygon when the train is in such a posi-
tiom thut the Jowd 111 jx at C and (para. 6) the ordinate
g mnltiplied by the polar distance, or constant horizontal
tezumion {1 gives the bending moment at C.

Fia. 18,

. I *: KON | |
scais.

LX) 1 2 (] £3 3 £00 foot tons

It must now bo ascertained whether the bending
moment is not greater when II is at C.
Make 1l @' equal to @, and proceeding exactly as
~fore we obtain pr as the new closing line and y' as
» new ordinate.
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Tefree. I3 dum Tle fmintus selrmon shoald be drawn
2 12 Ina st w0 @ oweeesgeod w0 a length of
o 1Tt T0rnen i€ e leaTest rain equal to twice
s ST o e trulme

T mrre o Daxima temizz moments (Fig. 13)
Ess eosms wlad wihl e argamnt if the scale to
wat-d it 3 Imaws wes: homer)

Il Appmiinaz: Meohos 17 ddzrmining the Mazima
Morienms—AT3ea2y te made of procedure above de-
soribod ensalls wery Ihils Ltoar the result can be
olMainad iz & (230KeT way 7122 wse of 20 approximate
metbad publisiald by Pr fessor Do EC Winkler in the
Austrian *Irgenisnr-cz i Architeckten - Verein’ for
1870, part I1. paze 33 where i1 is stated that

In onlder that the riomens a? anx section may be a mazi-
mum, the traim winst te i snsh a position that the loads
on both sides of tha! seciion dare mearly the same ratio
to cach ofher as the lengiks inio which the section divides
the bridge : or, that the lcads per unit of length on both
sides of the section are neariy equal. '

In conclusion, it remains to be said that in long rail-
way bridges the greatest travelling lcad is usually taken
to bo a train of two or three of the heaviest locomotives
fully equipped followed by such a number of the
heaviest goods waggons leaded to their maximum that
the train is of length sufficient to cover the whole
bridge.

[In England it is usual to take as the heaviest tra-
velling load for railway bridges, a train of locomotives
of the heaviest class, fully equipped, sufficiently long

» the whole bridge. Ifor bridges of large span,
', 8 uniformly distributed, arbitrarily chosen load



STATIONARY LOAD. 23

of from 1 to 1} tons per foot run for each line of rail is
usually taken in place of the concentrated loads.]

STATIONARY LoOADS.

11. Effect of a stationary Load having any fized Dis-
tribution.—A load distributed over the whole length
of a beam can evidently be supposed to be split up into
a number of single loads, so near to each other that the
funicular polygon becomes a curve which follows the
same laws as the polygon.

Suppose the partial load over each unit of length

of the beam A B, Fig. 14, to be set up as an ordi-
nate. Thus the figure A A'C'D'B'B is obtained.
This figure is called
the “loading area” of
the beam, and evidently
represents the load dis-
tribution.
. The funicular curve
corresponding to this
load distribution must
now be drawn.

Suppose the loading area cut up into strips A C,
CD’ DB, and that in place of the distributed load
the concentrated loads P;, P,, P;, acting at the centres
‘of gravity 8, S; S; of these strips, are substituted.
‘Set off the weights P,, P,, P; on the load line A; B,
and draw the funicular polygon a b, b, b, b relative to
any pole O. The angles b, b, by of the funicular
polygon are vertically under S, S, S, the centres of
gravity of the strips into which the loading area has
been cut. '

Fia. 14,
c' n

.
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Now if the size of the strips is supposed to diminish
indefinitely, the number of sides of the funicular
polygon increases indefinitely, and this polygon
becomes the funicular curve ac¢db, to which curve the
sides of the original polygon ab,, b b, b, b;, b b, are
tangents at the points a, ¢, d, b vertically under the
bounding lines A’ A, C'C, D’'D, B'B of the strips into
which the loading area was originally divided.

Hence the loading curve having been first drawn, any
required number of tangents to the corresponding
funicular curve can be obtained as well as their points
of contact with the curve. The curve can therefore be
drawn, and by its means the bending moments and
shearing forces at any cross sections of the beam can be
determined as in paras. 6 and 7.

12. Uniformly distribuied Dead Load.—If P is the
whole load uniformly dis-
tributed over a beam A B
of length /, then the load
per unit of area is

Set up p over AB as
a constant ordinate, thus
the rectangle Aa Bb (Fig. 15) is obtained as the
loading area of the beam A B.

Since the whole load is uniformly distributed, the
reactions of the two supports A and B are evidently
equal, or

_P _pl



UNIFORMLY DISTRIBUTED LOAD. 25

The sheanng force V at a section C for wh1ch
A C = ¢ is given by the equation

V=D-p.w=1§”(z-2w) .. (@)

and for 1
z=3; V=0

Also V is a maximum when @ = 0, for then
Y= + 'Z_’.‘;l o
When P .

Since by equation (a) V decreases as & increases and

)
becomes zero when = §; Fia. 16,

hence the shearing force
diagram will be bounded
bg ) IS;I‘ a]gt}? hlii i A "““Nm Il [
(g 15 g e 1Y ul\lmllll{lﬁ MIH l"WlHNMNWmmmw

will have as ordinates

, d
A L=-BL =Ii2——

at the two points of sup-*
port.
The bending moment at the section C (Fig. 16) is

M=D,m_1”_°2":"=112'_“(z-w). .. (8

When 2=0,0orz=1; M = 0; and M isa maximum

when ¢ = - or
2
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Equation (B) shows that the curve of bending moments
obtained for a uniformly distributed load is a parabola
a 8b whose vertex 8 is vertically under the centre of

2
a b and at a distance from a b, m 8 = Z% .

This parabolic funicular curve can readily be drawn
by means of its tangents, then the bending moments at
the various sections are given by the ordinates of the
curve.

In the polygon of forces make A'B'=p.l= P and
OA’'=0D. Then a I, I parallel to OA’and OB
respectively are tangents to the funicular curve at a
and b. Draw O & perpendicular to A’ B’ which it will
bisect.

Then the triangle a Im is similar to the triangle
OA'h; l}ence

Im am
AL~ Oh
or
l
Im _ 2
PI=H
2
whence l’
Pp.
Im-;—ﬂ—

If the pole O is go taken that Oh=H the unit on
the scale of forces, then
p.l?
4
3 the vertex s of the parabola bisects I m.
order to draw tangents at any point to the
ar curve under any section C, it must be re-

Im=
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uniformly loaded beam is extremely simple, it is not
unusual in practice to reduce the concentrated loads to
a uniform loading giving rise to the same mazimum
bending moment.

Suppose that by means of para. 9 the maximum
moment M, for the centre of the beam has been ob-
tained, then a uniformly distributed load which would
cause the same maximum bending moment at the centre
of the beam is calculated. By the preceding paragraph
the maximum bending moment due to & uniform load

distribution is expressed by 10_8? , where p is the load

per unit of length and I the clear span.
Hence putting

_»
M, = 8

we obtain
. 8M.

=-T2——........(a)

as the required uniformly distributed load per unit of
length.

For any section of the beam other than that at the
centre however, the moment obtained on the hypothesis
of a uniform distribution does nof agree with that to
which concentrated loads would give rise at that sec-
tion. :
Still greater will be the error arising in the values of
the shearing forces obtained on this hypothesis.

By proceeding on the hypothesis of a uniformly dis-
tributed load furnished by the above value for p, we
introduce therefore a more or less considerable error in

" rmination of V and M. In fact, the values of
‘htained on the supposition of this imaginary
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loading differ the more from their true values the

greater the difference between the concentrated loads
and the shorter the beam is.

- 14. Ezample.—The following simple example will

serve to make the above clear.

<N
Fig. 18 shows a bridge beam of 22 feet span carrying \:
locomotive whose wheel base is 8 feet. The weights on \
the leading and trailing axles are taken as 10 tons 3
each, that on the driving axle as 12 tons. The driving ~
axle is over the centre of the beam. \
L]
Fre. 18. 16 tons \
‘

— [ -
K
\ § N
S Iowru I?w mfau LN
The reaction of each of the supports will be ,\S
~
10 + 122_+_1_0 = 16 tons. f

The bending moment at the centre C, of the beam will
be a maximum.
Hence

M,=DxAC,—10x8=16x11~10x8=96 foottons. ~\

Pl
¢ ol

&

~ .

And by equation (a) of the precedmg paragraph, {

p=8_%<2_2%_1 Mtonsperfootrun. 1- ¥

We will now calculate the moment M at a section (%
due to a uniform load distribution p.
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From Fig. 19,
M=3xD-3px 1:5=235"796 foot tons.
But for the moment M’ at C, due to the load distribu-
tion indicated in Fig. 18, we have
M =3D =16 x 3 = 48 foot tons,

a result considerably in excess of that obtained on the
hypothesis of a uniformly distributed load.

D Fia. 19. D

3p
D Fia. 20.

Al il

N i : =86 N\
—————m 220 i
N T';_......._:; 4. §

We will now obtain the maxima shearing forces at
the centre of the beam, 1st, for the uniformly distributed
load, and 2nd, for the real distribution.

1st. From Fig.20 we have for the centre of the beam

V=D,
and taking moments about B,
Dx22=11p x 5°5.

V = 3°454 tons.

Hence
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2nd. From Fig. 21 we obtain
V=D,
and taking moments about B we have

Dx22=10x 11 +12 x 3.
Hence

V=664 tons nearly.

The latter value of V differs therefore considerably
from the former.

£
Al Q-“

10 tns 12 tons

From the above example we gather that the deter-
mination of M- and V on the hypothesis of an imaginary
uniform load distribution involves considerable error.
The proper mode of procedure is therefore that indi-
cated in para. 9.

[Note.—If, however, only one concentrated load acts
on the beam, the imaginary and the real load distribu-
tion give the same results.]

15. Combined effect of the permanent and accidental
loading of a Beam.—The simultaneous action of the
weight of a beam and of its accidental or temporary load
(the former of which makes itself more especially felt in
the case of bridges of long span) can evidently be dealt
with by a combination of the methods above described.
Suppose however, that for a first approximation to the
calculation of the shearing forces and moments at any
section of beam under consideration, the weight of the
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beam is uniformly distributed along its length, then
the results if obtained according to paras. 9 and 12
must be combined. To effect this the weight of the
bridge may be obtained from empirical formule de-
duced from numerous structures of a similar class.

For instance, calling w the weight of the bridge, then,
as an average for single line bridges,

w= 176368 4 2016 {,

where w is in lbs. and / the span in feet. [A better
formula for deducing approximately the weight of a
girder from its known load is given in Professor Unwin’s
¢ Iron Bridges and Roofs.’

Wiy
v T ),

(“ - Ca—lr)
Where

W = Total external distributed weight in tons (exclusive of girder).
W' = Weight of girder itself in tons,
{ = Clear span in feet.
8 = Average stress in tons per square inch of the gross section
of the booms, at the centre, usually 4.
r = Ratio of depth to span.
C a coefficient depending on the description of girder.

VaLves oF O IN DIFFERENT BRIDGEs.

Conway, tubular .. .. .. .. .. .. .. 1700
Britaunia ,, ce e e ee e . 1461
Torksey ,, e e eeow 1197
Cannon Street, box-glrder e e e .. 1540
» »  Dlate-girder .. .. .. .. 1598
Charing Cross, lattice .. .. .. .. .. 1880
Crumlin, Warren .. .. .. .. .. .. 1820
Lough Ken, bowstring .. e .. 1490 -
Swall plate girders, 30 ft. to 60 ft . .. 1280]

Having ascertained the greatest shearing forces and
bending moments at any sections due to the weight of
the bridge (estimated by the above formula) and to the
© "t temporary load, the dimensions of these sec-

st be calculated and from them the real weight
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third side of the triangle of forces. The arrows will
now point the same way round this triangle and will
give the senss of the components.

17. Resolution of a Force in three directions.—Suppose
that the force P, Fig. 23, is to be resolved into three
components having the given directions P,, P,, P;.
Produce P to cut one of the given directions P, in &
Then, as in para. 16, resolve P in the direction of P,
and of the line R, joining s with ¢ the intersection
of the other two given directions. Resolve R (again
reversing the direction arrow) in the directions P,
and P;. Then the closed polygon P, P,, P;, P, gives
the directions and magnitudes of the three components
Py, P;, P, of the force P.

Fia. 28.

[The forces P,, P,, P, and the reversed force P form
a system in equilibrium, hence the direction arrows
of these forces point the same way all round the
figure.]

If a force is to be resolved in more than three given
directions, the problem is indeterminate.

[The problem is also indeterminate if the three given
directions are parallel to that of the given force, or if
they meet in a point.]
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PART II.

— e

BRACED STRUCTURES,

19. General Considerations.—In the foregoing para-
graphs it is established that a force fully determined
can be resolved into two or three other components
having given directions. If therefore girders made up
of many parts are so put together that not more than
three bars are cut across by any particular section plane,
then the resultant of the exterior forces on one side
of the section plane can be distributed in the directions
of the cut bars without indeterminateness, and thus
the stresses in those bars can be obtained.

If moreover, a bar is strained by a force acting along
its axis, then this force, whether tensile or compressive,
is uniformly distributed over the whole cross section of
the bar.

On the other hand, if a bar is bent by the exterior
forces, then evidently the stresses due to the bending
are unequally distributed in the interior of the bar, and
the stress over the area of any cross section is mnot
uniform,

A good structure should therefore be made up as far as
possible of members in which only longitudinal stresses
arise. This 18 the case in braced beams.

A simple bracing in its most general form comsists of
two booms conmected by bars forming a succession of
*riangles in such a way that the several members are
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“gtress diagram.” For the sake of clearness the stresses
denoted by the lines of the stress diagram are dis-
tinguished by the same numbers as the corresponding
bars in the skeleton drawing or *frame diagram” of
the structure. Moreover, teusile stresses are denoted
by single, compressive stresses by double, and resultants
by dotted lines. Bars in compression are termed
“gtruts,” those in tension “ braces,” or * tension bars.”

Although after what has been said in para. 8 no
doubt should arise as to the sense of the interior
forces or stresses, it may be again stated that the
direction arrow of an interior force as obtained from
the stress diagram, is transferred to the bar to which
it corresponds, being placed nearest to the joint at
which the resolution was commenced. Then an arrow
in the opposite direction is introduced near the other
extremity of the bar, and according to para. 3 we
obtain

compression €— —>

For interior forces .
tension _——

while the reverse arrow combination obtains for the
exterior forces. _

Suppose the bar under consideration to be cut across,
that part of it only remaining which lies nearest to the
joint at which the resolution of the forces was made,
and that in place of the portion cut away, the stress
obtained from the stress diagram acts as an exterior
force. Then if the direction arrow of the latter points
outwards, i. e. away from the joint, the stress in the bar
is tensile, if inwards, i.e. towards the joint, compressive.

20. Foneiibrium of the Forces in a braced Structure.

structure is in equilibrium under the
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lattice and suspension arrangements together with
cranes, etc.; while to the second class belong bridge
girders.

BrACED STRUCTURES WITH CONSTANT LoAps.

21. Roof Trusses.—In making calculations for roof
constructions a uniform vertical load is usually assumed
to act upon the rafters. This is not strictly correct, as
the wind pressure varies from the horizontal through an
angle of about 10° Since, moreover, greater safety
will be ensured if the greatest wind pressure is assumed
to act simultaneously with the greatest snow pressure,
in practice it is usual to make asingle calculation based
on the above hypothesis, this course will be followed
here for the sake of simplicity.

The loads on a roof will therefore consist of—

1. The dead weight of the structure, or the perma-

nent load.

2. The weight of the greatest snowfall covering it.

3. The greatest wind pressure.

Deap WeieHT oF RooFs.
22. The following table gives approximately the
weights in kilos. per square metre and lbs. per square
foot of various kinds of roof coverings :—

‘WoopeN Roors.
) Average Weight.
Nature of Covering. Kil Lbs.
Sq. Metre. | 8q. Foot.
Single tiles .. .. .. .. .. .. 100 20
')ou‘ble til:ls e e ee ee e lgg 22
mary ating .. .. e 1
“onsglabs .. .. e lgg 20
v ee! ) e e 6
per (e Zf:”‘” 20 8
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-IroN RooFs.
Average Weight.
Nature of Covering.
Kilos. Lba.
Sq.O:(eE:e': Sq.RF(;’:tr.
Slates on angleirons .. .. .. .. | 50 { 10
Sheet iron on ditto .. .. .. .. 25 5
Corrugated iron on ditto .. .. .. 22 } 43
Corrugated zine on ditto .. .. .. 24 | 4-7

SNow PRESSURE.

23. The greatest depth of snowfall in Mid-Europe is
about 0°625 metre, or 2 feet nearly. The specific
gravity of snow is about one-eighth that of water.

Since 1 cubic metre of water weighs 1000 kilos., the
snow pressure will amount to 78 kilos. per square metre,
or 15°6 lbs. per square foot
over the horizontal projection Fie. 26.
of the roof.

This pressure decreases per
square foot in the ratio of

the half span % (Fig. 26)

to the length of the rafter Z.
The following table gives its value for the different

values of the ratio ’—;.

SNow PRESSURE.

Kilos. per l Lbs. per

-k Kil Lbs.
s | 8q. &s{e&eer 8q. Fﬁt: s Sq. Metre. I Sq. Foot.
| i
1 | 55 1| 15
L. 65 13 2 75 5 ‘ 15:1
070 14 3 152
r | 1B 14:6 & 154
P 148
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[In England a snow pressure of from 5 to 6 Ibs. per
square foot of area covered may be taken as giving suffi-
cient security.]

WIND PRESSURE.

21. The magnitude in kilogrammes per square metre
of the pressure p which the wind exerts on a plane
normal to its direction, is given by the empirical

formula
p=0-113¢

where v is the velocity of the wind in metres per second;
or if v is taken in feet,

p = 0-00 231 * 1bs. per square foot.

Since the direction of the wind usually makes an
angle of about 10° with the horizontal, its direction will
Fie. 27. make an angle a + 10° with a
plane A B inclined a. Draw
A D perpendicular to the direc-
tion of the wind meeting BD
parallel to that direction in D,
then the wind pressure acting on
a surface of length A B and
having a unit of breadth is

W=7»AD,

or since
AD = ABsin. (a + 10°)
we have

W = p.ABsin. (a + 10°).

Hence the wind pressure per unit of area on A B is

w_-YYB = p.sin. (a + 10°) .




-

oy

-

WIND PRESSURE. , 43
- Resolve w into a vertical component ¢ and a compo-
nent 8 acting along A B, then
sin. (a 4 10°)

I

sin, B -
B =90° - a. ;

sin. (a + 10°)
CO8. a

7
w
but

Hence
g _
w
and substituting the value of w obtained in I.,
.8in? (a + 10°
q = p_—_co(:a—) ¢« o s . II.

If v = 31-6 metres is taken as the maximum velocity
of the wind, then :

» = 113 kilogrammes per square metre ;
taking v = 100 feet, we have
» = 23 1bs. per square foot.
If h is the height of the roof and s the span, then

tan.a = —.
. 8

The following table gives the values per unit of area
of the vertical component of the wind pressure on roof
planes having various inclinations.

VERTICAL COMPONENT OF THE WIND PRESSURE.

L3 Kilos. Lbe.per |1 B Kilos. per Lbs, per
3 8q. Metre, | g Foot. I3 Sq Metre, | Sq. Foot.
} 107-20 21-44 } 22:45 4-49
% 64-75 12-95 3 19°30 3-86
3 44-65 893 3 17:00 3-40
3 83-90 6°78 w5 15-02 3-04
3 27°10 5-42
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By adding together the permanent load, the maximun
weight of snow, and the vertical conponent of the wind
pressure, the total vertical load is obtained.

25. [Note.—The above treatment of the question of
wind pressure cannot be regarded as satisfactory. It ha
been pointed out by Professor Unwin that wind
pressure, like fluid pressures generally, acts normally
to the roof surface instead of vertically, as is the case
of the other loads to which a roof is subject. The
usual direction of the wind is probably horizontal, and
though it is quite possible that this direction may
occasionally make a considerable angle with the
horizontal, becoming, for example, normal to roofs of
high pitch, it can very rarely, if ever, act vertically.
Now a horizontal or normal wind can act on only one
side of a roof, and it is evidently possible that this
partial or unsymmetrical loading may produce a much
greater distorting effect on the structure generally, and
greater stresses in parts of the bracing than a uniformly
distributed vertical load. Moreover, even on the sup-
position of a wind acting vertically, there will be a
horizontal component which it would be unsafe to leave
out of calculation.

It is therefore evidently necessary to ascertain what
will be the effect of a horizontal or normal wind acting
on one side of the roof, thus one stress diagram will not
suffice.

The following formula deduced by Hutton from
experiment gives the value of the normal pressure of
the wind on any plane surface in terms of P the
pressure on a plane surface perpendicular to its

du'ectlon and ¢ the angle of inclination of that
' plane of the surface.

| pressure P,=T sin, { %o
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The maximum force of the wind in England has
been variously taken at 40 and 50 lbs. per square foot
of surface perpendicular to its direction. Substituting
either of these values of P in the above equation the
normal pressure on the surface is obtained if the
direction of the wind is known. Supposing the direc-
tion of the wind to be horizontal, ¢ is equal to the
inclination or pitch of the roof. The horizontal and
vertical components of the wind’s normal pressure can
be obtained either by construction or by calculation.

The following table, taken from Professor Unwin’s
¢ Iron Bridges and Roofs,” gives the values of the normal
pressure (P,), and of its horizontal and vertical com-
ponents (P, and P,) for a horizontal wind acting with
a force of 40 per square foot of vertical surface exposed
to it, on roofs of various pitch.

Angle | Lbs. per Sq. Foot of Surface. || Angle Lbs. per 8q. Foot of Surface.
of of
Roof. | P, ' P | B || Root | P Pe P
o o
5 50 4-9 0-4 50 38-1 | 245 | 29-2
10 97 96 1-7 60 40°0 | 20°0 | 34°0
20 181 | 17°0 | 6-2 70 41-0 | 14°0 | 38°5
30 26°4 | 228 | 13-2 80 40-4 70 | 39°8
40 33°3 | 256°5 | 21-¢ 90 40-0 0 40°0

To determine the stresses in the various members of
a roof truss it will be necessary therefore—

1st. To draw a diagram corresponding to the dead or
permanent load, including the weight of snow if it is
thought necessary.

2nd. Assuming the direction of the wind to be
horizontal, to draw either (a) a diagram corresponding
to the normal pressure obtained, as in the above o\
or () to draw two diagrams, one corresponding o X¥



. 46 GRAPHIC STATICS.

vertical and the other to the horizontal component of
the wind pressure. The latter mode of procedure (b)
will in some cases be simplest, though in other cases
the diagram of the horizontal component may, from
the coincidence of a large number of lines, give a bad
figure.

Now if the wiud instead of being horizontal is
supposed to have a direction normal to the roof surface,
it is evident that on the one hand the normal pressure
diagram for a horizontal wind read off on a different
scale will give the stresses due to a wind acting
normally, while on the other hand the horizontal com-
ponent diagram for a wind acting horizontally, read off
from a new scale, will give the stresses due to the
horizontal component of a wind acting normally.
Similarly the vertical component diagram for a hori-
zontal wind can be used to obtain the stresses due to
the vertical component of a normal wind. It is nsual
to assume the direction of the wind to be horizontal,
but it is possible that a normal wind may produce
greater stresses on some bars.

Having constructed the stress diagrams, it will be
necessary to make three tables, one giving the stresses
due to the dead load, another those due to the wind
pressure, and & third giving the total stresses due to
the wind and dead load together. The third table will
then give the maximum stresses on each member of
the roof.

In roofs provided with an arrangement permitting
expansion at one of the supports, it will be necessary to
draw diagrams to determine the wind pressure on each

of the roof separately, since only one of the
ts can furnish the necessary reaction
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d f for a resultant e¢f and resol
and 6. The remaining half of
account of the symmetry of th
to that already drawn,

27. The English Roof Truss, ]
of the four segments of the r
2 P so that cach of the two suj
rcaction of (8 = 1) P.

Fi6. 29.

In the stress diagram, resolve
into 1 = ac parallel to A E and 3 )
Proceeding to the joint E, combine 1 with ad = 2P
for a resultant cd and resolve ¢d into 3 = ce parallel
to EF and 4 = ed parallel to EG. Then passing to
the joint F, combine 2 and 3 for a resultant eb and
resolve e¢b into 5 =e f parallel to FG and 6 =bf
parallel to FH. Proceed to G and combine 4 and
2 P = dg with 5 for a resultant g f, resolve g f into 7
parallel to G H and 8 = hg parallel to GF. At the
next joint H combine 6 and 7 and obtain & b, resolve kb
" " 9=hs parallel to HJ and 10=1b parallel to HG.0
ymbine 8, 2 P, and 9 for a resultant ¢ £ andxgsolve
« - 11=41 parallel to JCand 12 = Ik pa:;%q
i \lly, at the joint B combine 12 and 2 P for _ !
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resultant Im and resolve I m into 13 = mn parallel to
B C and 14 = In parallel to BD.

From the symmetry of the structure the stresses in
the corresponding bars on the other side of the centre
line are identical with those already obtained.

28. The Belgian, or French Roof Truss, Fig. 30.—
Suppose that each of the four segments of the rafters
are loaded with a weight 2 P, so that the load distribu-
tion is the same as in the last case.

Fie. 30.

7P

v

In the stress diagram, resolve the reactiol h
into 1=a ¢ parallel to A E and 2=cb pars
At the joint E combine 1 = ac with 2]
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resultant ¢ d and resolve ¢d into 3=ce parallel to EF
and 4=ed parallel to EG. Passing to F, 2=¢b and
3 =ce are combined for a resultant b e and b e is resolved
into 5 = ¢ f parallel to P G and 6 = fb. At G, the
resultant of the three known forces 4, 5 and 2 P must
be resolved into three forces in the directions G C, GJ
and G H; and this resolution is indeterminate. We
must therefore determine one of the three unknown
forces for example 7. Now from the symmetry of the
position of the two tension bars G F' and G J with re-
spect to G C the stresses 5 and 9 may be assumed to be
equal since they resist 2 P in a similar way. The com-
pression 7 on the strut G C must therefore be taken as
the resultant of the two equal tensions 5 and 9 and of
that component of 2 P which is parallel to G C. Hence
eg must be made equal to 5 and parallel to G J, and
g k equal to hi, then fk is parallel to 7. Thus Ak is
the resultant of 7, 5,4 and 2 P, and 2 % must therefore
be resolved into two components k¥ = 9 and 74 = 8.

The resultant b & of 6 = b,f and 7 = f & is resolved
into10=bmand1ll =km, then 8 =lhand2 P = hn
are combined and their resultant I is resolved into
12 =vn and 13 = vl. Finally the resultant of 11,9
and 13 is vm = 14,

29, The Bowstring Roof, Fig. 31.—In this form of
roof which is employed to cover a wider and higher
space, the snow and wind pressure cannot be assumed to
be the same per unit of area over the several segments
AC, CLE, EG, GJ, and therefore the vertical com-
ponent of the wind pressure and the weight of snow
per unit of area of each individual segment must be
separately determined from the tables given in pages
41 an” “"  Onply the weight of the structure, i.e. the
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permanent load, can be considered as uniformly dis-
tributed over the several segments.

F1a. 31,

Suppose that P,, P, and P, are the loads on the
three upper joints C,E, G, then each reaction will be
D=P, +P,+}P,.

In the stress diagram the reaction D =a b is resolved
into 1 =ac parallel to AC and 2 =bec parallel to A

2
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At the joint C, 1 and P, are combined for a resmltant
ed, and this resultant is resolved into 3 = ee parallel to
¢ D and 4 = ed parallel to CE. Passing to the jointD
combine the alrendy determined forces 2 and 3 fora
resultant be and resolve the latter into 5 = e f parallel
to I°'D and 6 =fb parallel to DF. At the joint E.
obtain f¢ the resultant of 4, 5, and P, and resolve fg
into 7T=/h parallel to EF and 8 =hg parallel to
EG. From 6 and 7 the resultant bA is obtained and
resolved into 9 =n¢ parallel to GF and 10 = b
parallel to FH. TFinally, 8, 9, and P, are combined
and their resultant b is resolved into 11 = ¢k parallel
to G I and 12 = k) parallel to G J.

I3EAMN SUPPORTED AT BOTH ENDS

80, The Simple Truss, Fig, 32.—In this form of truss
the benm A B in suspended at its centre C by an iron

Fia. 32.

rod, or by n wooden king-post to the joint D of the rafters
A D and B D, and supported at its ends. The half of the
load 2 I coneentrated at C falls on each of the supports
since A (! = (0 3. In the stress dingram make ab =P
and resolve ab into 1 parallel to A C and 2 parallel to
AD. For the joint C combine 2P = ad with 1 for a
reamltant 6 d and resolve ¢d into 3 parallel to CD and






':'-.‘l' tE!\‘
The

ey e

~
.
‘.

P
o th—i -he beam i3
Sootiel ar those peiats

Jee Teaetion arising
e maeticn P=ab
= vl to AC,
VNI irs direction
il oarddel o EC
suuirtlarere! g bed

wi T owerine 1z o thas

v, e
e e

v eviicpoe that
e T AT —This is

T2 lecavertad, eon-
~ own ot e similarly
<t oL Tars of both
sttt sutip stresses

teocr 2z tinde but

- .
L N A

STV v rara. 32

v mes Lo and 8 are

ol : “orce 4
RS 1since
IR - suffices

num rous ofder torms of ttuss can be simi-

, but siuce some of them can be brought

\







36 GRAPHIC STATICS.

to BD. For the joint C combine 1 and 3 for a resultant
bd and resolve it into 5 parallel to CD and 6 =be
parallel to CE. Finally for the joint D combine
4 and 5 for u resultant ea and resolve it into 8 = af
parallel to D F and 7 = ef parallel to D E.

36. The “ Perron” Roof, Fig. 39.—This roof can
evidently be treated as a braced cantilever. Suppose
P to be the load on each of the four segments of the
rafter A I, then at the extremities of the latter there

acts a load L 59 and at each of the intermediate joints a
load .

. F10.89. - T 10 1T @

For the stress diagram draw a b =—§ and resolve it

into 1 = ac parallel to AC and 2 = be parallel to A B,
Proceeding to B combine 2 with P = b d for a resultant
dc and resolve it into 3 = ce parallelto BCand 4 = ed
parallel to DB. Now for the joint C combine 1 with 3 for
aresultant ea and resolve ea into 6 = a f parallelto CE
and 5 = ef parallel to CD. For the joint D combine
5,4, and P = d g for a resultant fg and resolve fg into
7 = fh parallel to DE and 8 = gh parallel to DF.
"he forces meeting at the joints E, F, G, and H are
treated, and we obtain 9 =hs; 10 =azs. ;
2=lk; 13=Im; l4=am; 15=mo; l6=0n.
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The two end pillars A B, A, B, each suffer stresses of

)

. P
% only, since portions of the reactions equal to D - 3’

Fie. 45.

¢ al [D- 2P

f C 3 0 jl
‘ad.»

or 3) I’ are directly supported by the bars A D and

A, D,. Morcover the bars BD, D, B, appear to be
unloaded, as is also the case with the centre vertical
bar 11, tho lond P at F being directly supported by
the bars F C and F C,.

41. The Braced Beams of Figs. 44 and 45 combined.
—Suppose the two single beams, Figs. 44 and 45,
superposed and combined. We thus obtain the form
of structure shown in Fig. 46, in which the stresses
of those members which coincide must be added while
those of the diagonals remain unchanged. Since the
Vvertical struts in the two single beams, with the excep-
tion of the two end pillars, suffer opposite stresses,
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hence for each of the centre verticals of the combined
beam we have only the compression P, while for the
end pillars we have 2 P.

" Fr6. 46.
Jf’ 211’ zlP zP’ [P
B
+3 +7 B
/s /4
A A
c E ¢ &0

42. Braced Beams with parallel Booms and without
Verticals—In the single braced beam, Fig. 47, the

Fie. 417.
5 P [P lr
B 4 D __& F 2 Br
3 (3 7 9 9 7 s /[
A

c__a
.7 3 P
£ - 2 eyD
4 _:_T--‘-- o
g wa 3 b

parallel booms are connected by diagonals only. Suppose
in this case also a uniformly distributed load on **
upper boom BB,, then if the total load on the
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together with its weight is 4 P, we shall have the load
distribution indicated in the figure, and the reactions

D =2P. A portion of these reactions equal to IE’ will

evidently be directly balanced by the loads 12) acting at

B and B,, while the remainder equal to g P will be

transmitted by the end pillars AB, A, B, to B and B,,
and thence to the burs 3 and 4. Hence in A C and
A, (Y, there exist no stresses.

For the stress diagram, the partial reaction gP

transmitted to B is resolved into the bar-stresses
8 parallel to B C and 4 parallel to BD. From 8 the
stresses D = ¢d and 6 = d b are obtained, the resultant
de of 5, 4 and I is then resolved into 7 = fd and
8=c¢f. TFinlly 6 and 7 are combined for a resultant
Jband fb is resolved into 9 = fg and 10 = gb.
Suppose now that a second braced beam, having an
equal load and differing solcly in the reversed positions

Fie. 48.

Srrrrrreep

A 4

i d
of its diagonals, is superposed upon, and combined
with the first. Then the booms will coincide, and we

obtain the lattice girder shown in Fig. 48, which will
sustain twice the load of the single girder (Fig. 47).
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section, capable of maintaining equilibrium. Now on
the left portion A EF of the girder there are acting
only the three forces X, Y, Z, and the reaction D at A
due to the concentrated load P. These four forces must

Fie. 49.

therefore be in equilibrium, and hence the algebraic
sum of their statical moments about any point in their
plane must be nil. In order to eliminate the forces Y
and Z, take moments about F the intersection of the
directions of those forces. Thus if d and @ are the
perpendiculars dropped from F on the directions of D
and X,

D.d-X.e=0; orX=2.'—:l-

The direction arrow of X indicates that the seg-
ment E G of the upper boom is in compression under
the action of P, and hence every load applied on the
right of the section plane a B exerts a compressive stress in
that segment of the upper boom which is cut by the plane.

The effect produced by a load P applied to the left
of the section plane a 8 (Fig. 50) can be similarly in-
vestigated. Taking moments about F,

-D.d+X.a2=0; Ol‘X=]-)l'+dl.
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The stress in F H is therefore again tensile, and
hence generally—
The lower boom 18 subject to tension only, and this
tension 18 & maximum when the girder is fully loaded.
4. Maximum Stresses of the Bracing Bars.—Under
the term “ bracing bar” are included those members of
the structure which serve to unite the upper and lower
booms, e. g. the vertical and diagonal bars in Fig. 49.
In order to obtain the stress Y in a diagonal bar F G
(Fig. 49), suppose a concentrated load P applied to
the right of the section
o plane a B, and obtain the
| 6 X condition of equilibrium for
the left portion (Fig. 51)
| of the structure. Taking
i, moments about O the point
.. /F % in which the boom seg-
Ty 18 ments E G and F H meet
if produced. Then if y and
8 are the respective perpendiculars dropped from O on
the directions of Y and of D,
D.s

-D3+Y.y=0; orY=_'Y_’.

Fia. 51.

The direction arrow of Y indicates that any load
applied to the right of the bar F G exerts a compressive
stress in F G.

Suppose the load P to be applied on the left of the
section a 8 (Fig. 52), then taking moments about O
and calling y and &, the respective perpendiculars
dropped from O on Y and on D, the reaction of the

*t due to P,

T4 Yy=0;0rY =200,
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- Hence generally—
The vertical bars suffer opposite stresses when the lvad
18 applied on the right and on the left of them, and their
greatest stress occurs when the girder s loaded to its maxi-
mum extent on one side of them.

Fic. 57.
q‘ -F Y
XN,
Z E

; ~ "

In conclusion with regard to the greatest values of
the stresses X and Z of the two horizontal segments
of the booms (FH and EG, Fig. 53), these stresses
will as in all braced girders be a maximum when the
whole structure is fully loaded. Moreover in the case
of parallel booms X and Z are the only horizontal
forces which enter into the case, therefore since no
variation in a horizontal direction can arise,

X=2

BRACED GIRDERS FOR RAlinway BRrIDGES.

47, General Case.—By means of the results obtained
in the foregoing paragraphs it will not be difficult